from sklearn import datasetsfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.model_selection import StratifiedKFold, cross_val_score# 加载鸢尾花数据集的特征和标签:X, y = datasets.load_iris(return_X_y=True)# 创建决策树分类器,固定随机状态确保结果可复现:clf = DecisionTreeClassifier(random_state=42)# 初始化分层 K 折交叉验证器(5 折):sk_folds = StratifiedKFold(n_splits=5)# 执行分层交叉验证评估:scores = cross_val_score(clf, X, y, cv=sk_folds)# 输出验证结果:print("交叉验证得分: ", scores)print("平均交叉验证得分: ", scores.mean()) print("用于计算平均的交叉验证轮数: ", len(scores))