from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import LeaveOneOut, cross_val_score
# 导入鸢尾花数据集的特征和标签:
X, y = datasets.load_iris(return_X_y=True)
# 初始化决策树分类器,固定随机种子保证结果可重复:
clf = DecisionTreeClassifier(random_state=42)
# 创建留一法交叉验证对象:
loo = LeaveOneOut()
# 使用留一法进行交叉验证评估:
scores = cross_val_score(clf, X, y, cv=loo)
# 输出验证结果:
print("交叉验证得分:", scores)
print("平均交叉验证得分:", scores.mean())
print("参与平均的交叉验证次数:", len(scores))