import numpy
from sklearn import linear_model
# 准备特征数据和标签:
X = numpy.array([3.78, 2.44, 2.09, 0.14, 1.72, 1.65, 4.92, 4.37, 4.96, 4.52, 3.69, 5.88]).reshape(-1,1)
y = numpy.array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])
# 创建并训练逻辑回归模型:
logr = linear_model.LogisticRegression()
logr.fit(X, y)
# 定义将逻辑回归结果转换为概率的函数:
def logit2prob(logr, X):
# 计算对数几率
log_odds = logr.coef_ * X + logr.intercept_
# 计算几率
odds = numpy.exp(log_odds)
# 计算概率
probability = odds / (1 + odds)
return probability
# 输出样本预测概率:
print(logit2prob(logr, X))