from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import KFold, cross_val_score
# 加载鸢尾花数据集的特征和标签:
X, y = datasets.load_iris(return_X_y=True)
# 创建决策树分类器,设置随机种子确保结果可复现:
clf = DecisionTreeClassifier(random_state=42)
# 创建 5 折交叉验证器:
k_folds = KFold(n_splits=5)
# 执行交叉验证评估模型性能:
scores = cross_val_score(clf, X, y, cv=k_folds)
# 输出交叉验证结果:
print("交叉验证得分:", scores)
print("平均交叉验证得分:", scores.mean())
print("用于计算平均得分的验证次数:", len(scores))