import numpy
from sklearn import metrics
# 生成模拟数据:实际标签和预测标签(二项分布,成功概率 90%)
actual = numpy.random.binomial(1, 0.9, size=1000)
predicted = numpy.random.binomial(1, 0.9, size=1000)
# 计算特异度(负类别的召回率,即真实为 0 且预测正确的比例):
Specificity = metrics.recall_score(actual, predicted, pos_label=0)
print(Specificity)