import numpy
from sklearn import metrics
# 生成模拟数据(90% 概率为 1 的二元分类数据)
actual = numpy.random.binomial(1, 0.9, size=1000)
predicted = numpy.random.binomial(1, 0.9, size=1000)
# 计算敏感度/召回率(正类别的识别率):
Sensitivity_recall = metrics.recall_score(actual, predicted)
print(Sensitivity_recall)