from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
data = datasets.load_wine()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(
X, y,
test_size=0.25,
random_state=22
)
dtree = DecisionTreeClassifier(random_state=22)
dtree.fit(X_train, y_train)
y_pred = dtree.predict(X_test)
print("训练集准确率:", accuracy_score(y_true=y_train, y_pred=dtree.predict(X_train)))
print("测试集准确率:", accuracy_score(y_true=y_test, y_pred=y_pred))